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Models for Replicated Ratings

Jian Bi and Daniel Ennis

Background: A competitor has introduced a new fragrance for
young females into a market that your company dominates with
an existing fragrance. Since these fragrances are quite different
according to your perfumers, you decide to test them among sepa-
rate consumer samples to avoid effects introduced by testing the
different fragrances on the same individuals. Your main interest
is in comparing the degree of liking for your fragrance and the
new rival. However, you also suspect that there may be differ-
ences in individual hedonic response to the fragrances and in how
individuals use rating scales. For these reasons you decide to use
replicated tests in which each consumer evaluates only one type
of fragrance. Replicated ratings data are collected from two young
female groups with 50 and 54 consumers, respectively. The smaller
sample is for your product. Six replications are obtained from
each consumer. A 5-point liking scale is used where “1”” means
“dislike very much” and “5” means “like very much”.
Replicated ratings data such as these arise in sensory and con-
sumer acceptance research. The main advantage of replicated
measurement is that it can improve the reproducibility of an ex-
periment. Replicated measurements typically yield more precise
estimates or more powerful tests with the same number of con-
sumers. Conventional statistical models such as the binomial and
multinomial usually fail to fit replicated measurement data. Al-
ternative models are needed for the kind of data given in the above
example.

Ratings are ordered categorical data. Researchers in the social
sciences including those in sensory and consumer science have
relied on statistical methods, such as the 7-test and the analysis of]
variance, which were designed for applications where the out-
comes are continuous. However, analysis options have been chang-
ing gradually over the last two decades and new tools, more ap-
propriate to categorical data, are emerging. There are many use-
ful procedures now available for analyzing categorical or repli-
cated categorical data. One group of techniques transforms the
data in order to treat them using existing methods for continuous
data. Examples are the general linear model (GLM)' and general-
ized estimating equations (GEE)?. Another group of techniques
deals with categorical or replicated categorical data in their origi-
nal form without transformation and these are the models that we
discuss here. Our interest in these models is two-fold. First, we
would like to remain as faithful as possible to the original data
without transformation. Second, we can connect the parameters
of these models directly to Thurstonian models® for ratings and
difference testing methods and this allows great flexibility in in-
terconnecting methodologies.

The Multinomial Model: The multinomial distribution is a mul-
tivariate discrete distribution. Itis a natural extension of the bino-
mial distribution when the number of response categories is more

than two. In the following two extreme situations, the multino-
mial model could be used for each of the consumer samples in the
fragrance example:

1) Assume that each consumer always gives the same rating score
for a product. In this situation, replication is not necessary. So,
the vectors of frequencies for the liking rating categories follow
the multinomial distributions with sample size N, =50 and N, =
54 and parameter vectors 7, and 7,, each summing to 1.

2) Usually a subject gives different rating scores for the same prod-
uct at different times. These rating scores have some probability
of occurring. If we assume that the responses for all consumers
are independent of one another and that the consumers have the
same response pattern, then the vector of rating frequencies for
the pooled data across subjects follows a multinomial distribution
with sample sizeNjand parameter vector 7. = (pjl > Pjosees pjs) ,
j=12.

These two assumptions are quite naive because each consumer
may not always give the same rating for a product. In addition,
consumers in the same group may not have identical response
patterns because these patterns may depend on how a particular
consumer interpreted the rating instrument used. If the two as-
sumptions described above are not justified, pooled data for con-
sumers in a group will not follow a multinomial distribution. The
usual formulae for Pearson’s chi-square and likelihood ratio tests
may not provide reliable statistics, even for very large samples.
This phenomenon is referred to as overdispersion. Ignoring the
inter-consumer or inter-trial variation can result in an inflated Type
I error level for tests on the mean response probabilities for each
rating category. In the presence of overdispersion, where then
does the multinomial assumption apply? For replicated ratings
for each consumer in the fragrance example, the vector of liking
frequencies within each consumer may be assumed to follow a
multinomial distribution with sample size n = 6 (the number of
replications) and parameter vector P where j and i represent con-
sumer samples and consumers within samples, respectively. The
key issue to be resolved in developing a model to handle
overdispersion is how to model the distribution of p;; over con-
sumers or trials.

The Dirichlet-Multinomial Model: There is a close parallel
between the generalization of the binomial to the beta-binomial
(BB)* and the generalization of the multinomial to the Dirichlet-
multinomial (DM)°. See Figure 1 to see how these models are
interconnected. The Dirichlet distribution is the multivariate beta
distribution and allows us to treat the within-trial multinomial prob-
abilities as random variables very much the way that the beta dis-
tribution treats binomial probabilities. This means that we have a
formal way of accounting for differences among consumers within
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groups in how they use rating scales. For a particular group, we
estimate two parameters: T, a vector of response probabilities for
the scales used and Cj, an overdispersion parameter for the group.
The number of elements in ., is the number of rating categories
and C, provides information on the extent of overdispersion present.
Figure 1. Relationships among categorical data models. All
of the models are special cases of the generalized Dirichlet-
[

multinomial model.
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In the figure above, it can be seen that the binomial is a special
case of the beta-binomial when there is no overdispersion. If there
is more than one source of overdispersion, then the appropriate

model is the generalized BB where a different beta distribution
applies to each source of overdispersion.
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The right side of Figure 1 parallels the left side for choice re-
sponses involving more than two categories. The multinomial
replaces the binomial, a special case, and the DM models replace
the BB models.

Fitting the Fragrance Data to the DM Model: Your first goal
is to test for overdispersion by comparing the DM model to the
multinomial. The generalized Tarone’s Z statistic’ is used and the
p-values for the goodness of fit tests are smaller than 0.01. This
means that the variation among consumers within both of the
samples cannot be ignored and the DM model fits the data better
than the multinomial.

Estimating and Testing the Parameters of the DM Model:
Using methods for fitting and testing the DM models, your esti-
mates ofrcj are: 17I:1 = (.03, .08, .05, .37, .48) and ftz =(.02,.07,
.09, .43, .39) as shown in Figure 2. Your estimates of C] are: C =
245and C,=2.33. The C; values are significantly larger than
one but not different from each other. You conclude that indi-
vidual consumers differ within both groups in how they rate the
fragrances, but that there is no difference betweens groups in rat-
ing heterogeneity. This result once again confirms that
overdispersion is present in both groups because of differences
among consumers in rating scale use.

Your main interest in evaluating the fragrance data is to test for a
difference in degree of liking for the fragrances. This test shows
that the two vectors of proportions are not significantly different
(p-value = .38), while Pearson’s * statistic shows that the two
vectors of proportions are significantly different (p-value = .04).
These results are different because variation among consumer is

ignored in Pearson’ y? test. This leads to an inflated Type I error.
The importance and reliability of the DM model is that it accounts
for both inter-trial and intra-trial variation in replicated ratings.

Figure 2: Proportion means for the five point liking scale
among two consumer samples who evaluated fragrances.
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Other Applications: Overdispersion can arise in numerous ways.
In the fragrance example, differences among consumers was the
source. In highly trained panels, differences among subjects may
not be the main cause of overdispersion, but it may be associated
with other aspects of the experiment. For instance, if a product is
produced at different factories and evaluated by a panel of ex-
perts whose rating response pattern is uniform across panelists,
overdispersion may be due to factories. The number of replica-
tions in this case would be the number of panelists. Hierarchical
or generalized DM models can be constructed to account for
multiple sources of overdispersion such as that due to consumers,
differences in experimental material and time.

Conclusion: The DM model is an extension of the multinomial
model and is an appropriate model for replicated ratings data when
inter-trial variation cannot be ignored. Critical applications of
these models are in product development, claims support and qual-
ity assurance. When overdispersion occurs, Pearson’s 2 test may
result in a higher Type I error level than planned because of an
underestimate of variance. The DM test is more reliable than
Pearson’s * test in these applications because more sources of
variation are accounted for. When overdispersion does not exist,
the DM model reduces to the multinomial.
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