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* Three Step Approach
Step 1: Unfolding

Step 2: Segmentation

Step 3: Segment Characterization

o Standard Approaches
o Machine Learning Approach

 Conclusions
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Artificial Intelligence (Al) and Machine Learning?

[Artificial Intelligence}

Decision Trees

Linear Regression

Neural
Networks

12 S Support Vector PCA

Machines

Computer
Vision

Reasoning Planning

Knowledge
Representation

* Goal of Al is to either model human
Intelligence or create rational agents

* Machine Learning focuses on
improving task performance with
additional data

e Machine Learning is a subfield of Al
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Applications of Al

* Similar to introduction of
applications of electricity

* Current techniques and
approaches will evolve

* New techniques and
opportunities will arise
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Standard Machine Learning Techniques
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Linear and Logistic Dimensionality Mapping and
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Machine Learning Advances

Computational Algorithmic Crossover from
Power Improvements Other Fields
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Applications of Machine Learning

Large Quantities Combinations Regression and
of Data (Combinatorial Explosion) Classification

But data quality is still paramount!

_ﬁ(\The Institute for Perception 9/21




13™PANGBORN SENSORY SCIENCE SYMPOSIUM

" PANCBORN 2015 -4t

“'\
< n = \
ad+ 00467
30 o
n(BUC) =n(B)+n(C)n(BNC) ’f, , A1
= 4002602 N g ) Y 4.
I . 2.9897¢ ( & CH, CHgen
4 Ar =391 [ [ -
2 » | >
<« B, >
ul
.

log,x - |og,,y afbe) = (ab)c
a+b=b+a

A Three-Step Approach to Characterizing , B

126 =6xy

Consumer Segmentation via Machine Learning

Scenario

_ﬁ(\The Institute for Perception 10/21




Scenario
(Inspired from a Client Project)

* Brand of boutique barbecue sauces

* Need well-positioned portfolio of sauces for
the US national market

e Nationwide category appraisal
e 8 test products evaluated over two days
e 5 own (current brand, 4 prototypes) Bi B, Bsj B By
e 3 competitors ¢ ¢ ¢
e N=423 category users

* Question:
e To whom should we market which product?
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Three Step Approach
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Step 1: Unfolding
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.+ Unfold the liking data to
i Landscape Segmentation
' Analysis® (LSA) map
‘

» Respondents with similar
liking patterns have similar
ideal locations

* Use ideals to conduct
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Step 2: Identify Consumer Segments

* Cluster individuals into

segments with similar
liking patterns using
portfolio optimization

* To decide how many

segments, use a
scree plot

* Diminishing returns

appear at four segments

| 75

2 94
B 162

4 92

_ﬁ(\The Institute for Perception

18%
22%
38%
22%

96%

94%

9204 of segments

Percentage of Maximal Team Liking

88% ' . . . . . .
1 2 3 4 5 6 7 8

Number of Segments

Note: Machine learning tools generally perform best when
there are roughly equal numbers of subjects in each cluster

Selected number
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Step 3: Characterizing the Segments

Standard Approaches?

or

[ START HERE

(ROOT) } Machine Learning Approach?
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Standard Approaches

« Consider various pre-defined
consumer groups

 E.g. color-coded by gender

» Means not significantly different

e | e _segment_| Southeast | Midwest | Northeast | West Coast

1 57% 43%
2
3 63% 37% 8%
4 63% 37% 1o
21%
23%
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Examine hedonic clusters
one consumer variable at a time

44%
13%
24%
30%

20%
37%
23%
24%

8%
16%
33%
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Machine Learning Approach

[ START HERE ]

(ROOT)
e * Using demographic, behavioral, and
eglon: psychographic variables, we classify
SOUTHEAST the segments via decision trees
NORTHEAST
MIDWEST WEST COAST
— — * Can compare hundreds of variables
egion? - : i
R and their interactions automatically
— [ SOUTHEAST ]
NORTHEAST * Obtain combinations to describe
Often eat Gender? segments
spicy food?
YES * May have multiple descriptions for
one segmen
Shop with gme ¢
list?
Male Yes

SEG 3 SEG 3

(\'[o} Yes
SEG 1 SEG 3

_ﬁ(\The Institute for Perception 17/21




Conclusions

* Machine learning provides new tools
and improves existing techniques for
consumer insights

* Itis now possible to find multiple
characterizations for consumer
segments in terms of psychographic,
demographic, and behavioral data

* These characterizations can be used to
guide marketing, product development,

| A, a(bc) = (ab)c
and future research B a+b = bta (1002)a + 100

a(b+c) = ab+ac 10000 a + 100 b -
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