13TH PANGBORN SENSORY SCIENCE SYMPOSIUM

PANGBORN 2019

28 July – 1 August 2019 | Edinburgh International Convention Centre, Edinburgh, UK

www.pangbornsymposium.com

A Three-Step Approach to Characterizing Consumer Segmentation via Machine Learning

William J. Russ
The Institute for Perception

John M. Ennis*

^{*}Research conducted at The Institute for Perception

Organised by:

I am happy for you to photograph or tweet the slides from my talk

Organised by:

Tweet #Pangborn19

- Background
- Scenario
- Three Step Approach
 - •Step 1: Unfolding
 - Step 2: Segmentation
 - Step 3: Segment Characterization
 - Standard Approaches
 - Machine Learning Approach
- Conclusions

A Three-Step Approach to Characterizing Consumer Segmentation via Machine Learning

Background

Artificial Intelligence (AI) and Machine Learning?

 Goal of AI is to either model human intelligence or create rational agents

 Machine Learning focuses on improving task performance with additional data

Machine Learning is a subfield of Al

Applications of Al

 Similar to introduction of applications of electricity

Current techniques and approaches will evolve

New techniques and opportunities will arise

Standard Machine Learning Techniques

Linear and Logistic Regression

Dimensionality Reduction

Mapping and Unfolding

Machine Learning Advances

Computational Power

Algorithmic Improvements

Crossover from Other Fields

Applications of Machine Learning

Large Quantities of Data

Combinations (Combinatorial Explosion)

Regression and Classification

But data quality is still paramount!

A Three-Step Approach to Characterizing Consumer Segmentation via Machine Learning

Scenario

Scenario (Inspired from a Client Project)

- Brand of boutique barbecue sauces
 - Need well-positioned portfolio of sauces for the US national market

- Nationwide category appraisal
 - 8 test products evaluated over two days
 - 5 own (current brand, 4 prototypes) B₁ B₂ B₃ B₄ B₅
 - 3 competitors C₁ C₂ C₃
 - N=423 category users
- Question:
 - To whom should we market which product?

A Three-Step Approach to Characterizing Consumer Segmentation via Machine Learning

Three Step Approach

Step 1: Unfolding

 Respondents with similar liking patterns have similar ideal locations

• Use ideals to conduct consumer segmentation

Step 2: Identify Consumer Segments

- Cluster individuals into segments with similar liking patterns using portfolio optimization
- To decide how many segments, use a scree plot
- Diminishing returns appear at four segments

Segment		Counts	Percentages		
	1		75	18%	
	2		94	22%	
	3		162	38%	
	4		92	22%	

Note: Machine learning tools generally perform best when there are roughly equal numbers of subjects in each cluster

Step 3: Characterizing the Segments

Standard Approaches?

or

START HERE (ROOT)

Machine Learning Approach?

Standard Approaches

- Consider various pre-defined consumer groups
- E.g. color-coded by gender
- Means not significantly different

Segment	Men	Women	
1	57%	43%	
2	38%	62%	
3	63%	37%	
4	63%	37%	

Examine hedonic clusters one consumer variable at a time

Segment	Southeast	Midwest	Northeast	West Coast
1	28%	44%	20%	8%
2	34.%	13%	37%	16%
3	21%	24%	23%	33%
4	23%	30%	24%	23%

Machine Learning Approach

- Using demographic, behavioral, and psychographic variables, we classify the segments via decision trees
- Can compare hundreds of variables and their interactions automatically
- Obtain combinations to describe segments
- May have multiple descriptions for one segment

Conclusions

- Machine learning provides new tools and improves existing techniques for consumer insights
- It is now possible to find multiple characterizations for consumer segments in terms of psychographic, demographic, and behavioral data
- These characterizations can be used to guide marketing, product development, and future research

PANGBORN 2019

28 July – 1 August 2019 | Edinburgh International Convention Centre, Edinburgh, UK

www.pangbornsymposium.com

A Three-Step Approach to Characterizing Consumer Segmentation via Machine Learning

William J. Russ

√ The Institute for Perception

John M. Ennis*

^{*}Research conducted at The Institute for Perception

Thank you very much for your attention

References (1/2)

- 1. D.M. Ennis, J.M.Ennis, and B. Rousseau (2018). Tools and Applications of Sensory and Consumer Science. Richmond, VA: The Institute for Perception.
- 2. Ennis, D. M. and Ennis, J. M. Mapping hedonic data: A process perspective. *Journal of Sensory Studies*, **28**, 324-334.
- 3. Ennis, J. M., Ennis, D. M., and Fayle, C. M. (2010). Optimum Product Selection for a Drivers of Liking[®] Project. *IFPress*, **13**(1) 2-3.
- 4. Ennis, J. M., & Fayle, C. M. (2010). Portfolio optimization based on first choice. IFPress, 13(2), 2–3.
- 5. Ennis, J. M., Fayle, C. M., and Ennis, D. M. (2012). eTURF: A competitive TURF algorithm for large datasets. *Food Quality and Preference*, **23**(1), 44-48.
- 6. Ennis, J. M. and Russ, W. J. (2016). eTURF 2.0: From Astronomical Numbers of Portfolios to a Single Optimum. IFPress, **19**(2) 3-4.
- 7. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). *An introduction to statistical learning* (Vol. 112). New York: springer.

References (2/2)

- 8. Friedman, J., Hastie, T., & Tibshirani, R. (2001). *The elements of statistical learning* (Vol. 1, pp. 337-387). New York: Springer series in statistics.
- 9. Géron, A. (2017). Hands-on machine learning with Scikit-Learn and TensorFlow: concepts, tools, and techniques to build intelligent systems. "O'Reilly Media, Inc.".
- 10. Nestrud, M. A., Ennis, J. M., Fayle, C. M., Ennis, D. M., and Lawless, H. T. (2011). Validating a graph theoretic screening approach to food item combinations. *Journal of Sensory Studies*, **26**(5), 331-338.
- 11. Nestrud, M. A., Ennis, J. M., and Lawless, H. T. (2012). A group level validation of the supercombinatorality property: Finding high-quality ingredient combinations using pairwise information. *Food Quality and Preference*, **25**(1), 23-28.
- 12. Patterson, J., & Gibson, A. (2017). Deep learning: A practitioner's approach. "O'Reilly Media, Inc.".
- 13. Rousseau, B., Ennis, D. M., and Rossi, F. (2012). Internal preference mapping and the issue of satiety. *Food Quality and Preference*, **24**(1), 67-74.
- 14. Worch, T. and Ennis, J. M. (2013). Investigating the single ideal assumption using Ideal Profile Method. *Food Quality and Preference*, **29**(1), 40-47.